Frequency Domain Turbo Equalization with Iterative Channel Estimation for Single Carrier MIMO Underwater Acoustic Communications
Abstract
In this paper, we propose a low-complexity single-carrier frequency-domain iterative receiver for triply-selective underwater acoustic (UWA) fading channels, which combines frequency domain decision feedback equalization (FD-DFE) with iterative channel estimation. Due to long multipath channels, frequency domain turbo equalization has to use large block size to achieve low computational complexity and high data efficiency, but UWA channel coherence time is often much shorter than block length. We utilize pilots or soft decision symbols obtained at the previous iteration to re-estimate channel at each turbo iteration, thus achieving satisfactory performance. Although having slightly inferior bit error performance to time-domain turbo equalizers, the proposed FDE scheme reduces the complexity by three orders of magnitude, making it affordable for real-time implementation. The proposed iterative receiver has been verified through both numerical simulations and undersea experiment data collected in the Surface Processes and Acoustic Communications Experiment 2008 (SPACE08).
Recommended Citation
Z. Chen et al., "Frequency Domain Turbo Equalization with Iterative Channel Estimation for Single Carrier MIMO Underwater Acoustic Communications," Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (2015, Boston, MA), Institute of Electrical and Electronics Engineers (IEEE), Sep 2015.
The definitive version is available at https://doi.org/10.1109/VTCFall.2015.7390960
Meeting Name
2015 IEEE 82nd Vehicular Technology Conference, VTC2015-Fall (2015: Sep. 6-9, Boston, MA)
Department(s)
Electrical and Computer Engineering
Sponsor(s)
Natural Science Foundation of China
National Science Foundation (U.S.)
Keywords and Phrases
Carrier communication; Data communication systems; Decision feedback equalizers; Equalizers; Fading channels; Frequency domain analysis; Frequency estimation; Frequency selective fading; Real time control; Signal receivers; Underwater acoustics; Acoustic communications; Decision-feedback equalizations; Frequency-domain Turbo equalizations; Iterative channel estimation; Low computational complexity; Real-time implementations; Three orders of magnitude; Underwater acoustic communications; Channel estimation
International Standard Book Number (ISBN)
978-1-4799-8091-8
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Sep 2015
Comments
This work is supported in part by the National Science Foundation of China (Grant No. 61471221) and the U.S. National Science Foundation under Grant No. ECCS-1408316.