An Accurate Small-Signal Model of Inverter-Dominated Islanded Microgrids using dq Reference Frame
Abstract
In the islanded mode operation of a microgrid, a part of the distributed network becomes electrically separated from the main grid, while loads are supported by local sources. Such distributed energy sources (DERs) are typically power electronic based, making the full system complex to study. A method for analyzing such a complicated system is discussed in this paper. A microgrid system with two inverters working as DERs is proposed. The controllers for the inverters are designed in the dq reference frame. Nonlinear equations are derived to reflect the system dynamics. These equations are linearized around steady-state operating points to develop a state-space model of the microgrid. An averaged model is used in the derivation of the mathematical model that results in a simplified system of equations. An eigenvalue analysis is completed using the linearized model to determine the small-signal stability of the system. A simulation of the proposed microgrid system consisting of two inverter based DERs, passive loads, and a distribution line is performed. An experimental testbed is designed to investigate the system's dynamics during load perturbation. Results obtained from the simulation and hardware experiment are compared with those predicted by the mathematical model to verify its accuracy.
Recommended Citation
M. Rasheduzzaman et al., "An Accurate Small-Signal Model of Inverter-Dominated Islanded Microgrids using dq Reference Frame," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 1070 - 1080, Institute of Electrical and Electronics Engineers (IEEE), Dec 2014.
The definitive version is available at https://doi.org/10.1109/JESTPE.2014.2338131
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Micro Grid; Reference Frame; Small Signal Model; Switched Energy; Mathematical Model; Inverters; Load Modeling; Microgrids; Phase Locked Loops; Equations; Voltage Measurement; Distributed Power Generation; Eigenvalues And Eigenfunctions; Invertors; Nonlinear Equations; State-Space Methods
International Standard Serial Number (ISSN)
2168-6777; 2168-6785
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2014 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Dec 2014
Comments
This work was supported in part by the National Science Foundation under Award EEC-0812121 and in part by the Future Renewable Electric Energy Delivery and Management Systems Center, Raleigh, NC, USA.