Experimental Validation of Finite Element Model Analysis of a Steel Frame in Simulated Post-Earthquake Fire Environments

Abstract

During or after an earthquake event, building system often experiences large strains due to shaking effects as observed during recent earthquakes, causing permanent inelastic deformation. In addition to the inelastic deformation induced by the earthquake effect, the post-earthquake fires associated with short fuse of electrical systems and leakage of gas devices can further strain the already damaged structures during the earthquakes, potentially leading to a progressive collapse of buildings. Under these harsh environments, measurements on the involved building by various sensors could only provide limited structural health information. Finite element model analysis, on the other hand, if validated by predesigned experiments, can provide detail structural behavior information of the entire structures. In this paper, a temperature dependent nonlinear 3-D finite element model (FEM) of a one-story steel frame is set up by ABAQUS based on the cited material property of steel from EN 1993-1.2 and AISC manuals. The FEM is validated by testing the modeled steel frame in simulated post-earthquake environments. Comparisons between the FEM analysis and the experimental results show that the FEM predicts the structural behavior of the steel frame in post-earthquake fire conditions reasonably. With experimental validations, the FEM analysis of critical structures could be continuously predicted for structures in these harsh environments for a better assistant to fire fighters in their rescue efforts and save fire victims.

Meeting Name

Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (2012: Mar. 12-15, San Diego, CA)

Department(s)

Electrical and Computer Engineering

Second Department

Civil, Architectural and Environmental Engineering

Keywords and Phrases

Experimental Validation; Finite Element Model; Harsh Environments; Post-Earthquake Fire; 3D Finite Element Model; Building Systems; Critical Structures; Damaged Structures; Earthquake Events; Electrical Systems; FEM Analysis; Fire Fighters; Inelastic Deformation; Large Strains; Material Property; Progressive Collapse; Shaking Effects; Steel Frame; Structural Behaviors; Structural Health; Temperature Dependent; ABAQUS; Deformation; Steel Construction

International Standard Book Number (ISBN)

978-0819490025

International Standard Serial Number (ISSN)

0277-786X

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 SPIE, All rights reserved.

Publication Date

01 Mar 2012

Share

 
COinS