Abstract
An effective method for extracting parameters of a Debye or a Lorentzian dispersive medium over a wideband frequency range using a genetic algorithm (GA) and a transmission-line model is presented. Scattering parameters (S-parameters) of the transmission-line sections, including a parallel plate, microstrip, and stripline, are measured. Wave equations for TEM/quasi-TEM mode with a complex propagation constant and a frequency-dependent wave impedance are used to evaluate the corresponding S-parameters in an analytical model. The discrepancy between the modeled and measured S-parameters is defined as the objective function in the GA. The GA is used for search of the dispersive-medium parameters by means of minimizing the objective function over the entire frequency range of interest. The reconstructed Debye or Lorentzian dispersive material parameters are corroborated by comparing the original measurements with the FDTD modeling results. The self-consistency of the proposed method is demonstrated by constructing different test structures with an identical material, i.e., material parameters of a substrate extracted from different transmission-line configurations. The port effects on the material parameter extraction are examined by using through-reflection-line calibration.
Recommended Citation
J. Zhang and M. Koledintseva and J. L. Drewniak and D. Pommerenke and R. E. DuBroff and Z. Yang and W. Cheng and K. Rozanov and A. Orlandi and G. Antonini, "Reconstruction of Dispersive Dielectric Properties for PCB Substrates using a Genetic Algorithm," IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 3, pp. 704 - 714, Institute of Electrical and Electronics Engineers (IEEE), Aug 2008.
The definitive version is available at https://doi.org/10.1109/TEMC.2008.927923
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Electromagnetic Compatibility (EMC) Laboratory
Keywords and Phrases
Electromagnetic Propagation In Dispersive Media; Finite-Difference Time-Domain (FDTD) Methods; Genetic Algorithms (GAs); Scattering Parameters; Transmission Lines; Algorithms; Boolean Functions; Chlorine Compounds; Dielectric Properties; Electric Lines; Finite Difference Time Domain Method; Numerical Analysis; Parameter Extraction; Scattering Parameters; Substrates; Ultrashort Pulses; Wave Equations; S-Parameters; Parameter Estimation
International Standard Serial Number (ISSN)
0018-9375; 1558-187X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2008