A Generic Participatory Sensing Framework for Multi-Modal Datasets
Abstract
Participatory sensing has become a promising data collection approach to crowdsourcing data from multi-modal data sources. This paper proposes a generic participatory sensing framework that consists of a set of well-defined modules in support of diverse use cases. This framework incorporates a concept of 'human-as-a-sensor' into participatory sensing and allows the public crowd to contribute human observations as well as sensor measurements from their mobile devices. We specifically address two issues: incentive and extensibility, where the former refers to motivating participants to contribute high-quality data while the latter refers to accommodating heterogeneous and uncertain data sources. To address the incentive issue, we design an incentive engine to attract high-quality contributed data independent of data modalities. This engine works together with a novel social network that we introduce into participatory sensing, where participants are linked together and interact with each other based on data quality and quantity they have contributed. To address the extensibility issue, the proposed framework embodies application-agnostic design and provides an interface to external datasets. To demonstrate and verify this framework, we have developed a prototype mobile application called imReporter, which crowdsources hybrid (image-text) reports from participants in an urban city, and incorporates an external dataset from a public data mall. A pilot study was also carried out with 15 participants for 3 consecutive weeks, and the result confirms that our proposed framework fulfills its design goals.
Recommended Citation
F. Wu and T. T. Luo, "A Generic Participatory Sensing Framework for Multi-Modal Datasets," Proceedings of the IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (2014, Singapore), IEEE Computer Society, Apr 2014.
The definitive version is available at https://doi.org/10.1109/ISSNIP.2014.6827702
Meeting Name
9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, IEEE ISSNIP (2014: Apr. 21-24, Singapore)
Department(s)
Computer Science
Keywords and Phrases
Crowdsourcing; Incentive mechanism; Participatory sensing; Pervasive computing; Social network
International Standard Book Number (ISBN)
978-147992843-9
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2014 IEEE Computer Society, All rights reserved.
Publication Date
01 Apr 2014