Sparse Real Estate Ranking with Online User Reviews and Offline Moving Behaviors

Abstract

Ranking residential real estates based on investment values can provide decision making support for home buyers and thus plays an important role in estate marketplace. In this paper, we aim to develop methods for ranking estates based on investment values by mining users' opinions about estates from online user reviews and offline moving behaviors (e.g., Taxi traces, smart card transactions, check-ins). While a variety of features could be extracted from these data, these features are Interco related and redundant. Thus, selecting good features and integrating the feature selection into the fitting of a ranking model are essential. To this end, in this paper, we first strategically mine the fine-grained discrminative features from user reviews and moving behaviors, and then propose a probabilistic sparse pairwise ranking method for estates. Specifically, we first extract the explicit features from online user reviews which express users' opinions about point of interests (POIs) near an estate. We also mine the implicit features from offline moving behaviors from multiple perspectives (e.g., Direction, volume, velocity, heterogeneity, topic, popularity, etc.). Then we learn an estate ranking predictor by combining a pairwise ranking objective and a sparsity regularization in a unified probabilistic framework. And we develop an effective solution for the optimization problem. Finally, we conduct a comprehensive performance evaluation with real world estate related data, and the experimental results demonstrate the competitive performance of both features and the proposed model.

Meeting Name

2014 IEEE International Conference on Data Mining, ICDM 2014 (2014: Dec. 14-17, Shenzhen, China)

Department(s)

Computer Science

Comments

This research was partially supported by National Science Foundation (NSF) via grant numbers CCF-1018151 and IIS1256016. Also, it was supported in part by Natural Science Foundation of China (71028002).

Keywords and Phrases

Behavioral research; Decision making; Housing; Investments; Optimization; Smart cards; Social networking (online); Taxicabs; Competitive performance; Comprehensive performance evaluation; Decision making support; Moving behavior; Online users; Real estate; Sparse Ranking; Sparsity regularizations; Data mining; Offline Moving Behaviors; Online User Reviews; Residential Real Estate

International Standard Book Number (ISBN)

978-1-4799-4302-9

International Standard Serial Number (ISSN)

1550-4786; 2374-8486

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2015 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2015

Share

 
COinS