Diagnosing Malignant Melanoma using a Neural Network
Abstract
In recent years, there has been a rising interest in the early detection of skin cancer, particularly malignant melanoma, via automated screening and diagnosis process. In this paper, we present a novel neural network approach for the automated distinction of melanoma from three other benign categories of tumors which exhibit melanoma-like characteristics. Our approach is based on devising new and discriminant features which are used as inputs to an artificial neural network for classification of tumor images as malignant or benign. We have obtained promising results using our method on real skin cancer images.
Recommended Citation
F. Erçal et al., "Diagnosing Malignant Melanoma using a Neural Network," Intelligent Engineering Systems Through Artificial Neural Networks, vol. 2, pp. 553 - 558, American Society of Mechanical Engineers (ASME), Nov 1992.
Meeting Name
Artificial Neural Networks in Engineering (1992: Nov. 15-18, St. Louis, MO)
Department(s)
Computer Science
Second Department
Chemistry
Third Department
Electrical and Computer Engineering
Keywords and Phrases
Diagnosis; Image Analysis; Medical Imaging; Oncology; Tumor Image Diagnosis; Neural Networks
International Standard Book Number (ISBN)
791800296
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1992 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Nov 1992