Automated Vesicle Fusion Detection using Convolutional Neural Networks
Abstract
Quantitative analysis of vesicle-plasma membrane fusion events in the fluorescence microscopy, has been proven to be important in the vesicle exocytosis study. In this paper, we present a framework to automatically detect fusion events. First, an iterative searching algorithm is developed to extract image patch sequences containing potential events. Then, we propose an event image to integrate the critical image patches of a candidate event into a single-image joint representation as the input to Convolutional Neural Networks (CNNs). According to the duration of candidate events, we design three CNN architectures to automatically learn features for the fusion event classification. Compared on 9 challenging datasets, our proposed method showed very competitive performance and outperformed two state-of-the-arts.
Recommended Citation
H. Li et al., "Automated Vesicle Fusion Detection using Convolutional Neural Networks," Proceedings of the International Symposium on Biomedical Imaging (2015, Melborne, Australia), pp. 183 - 187, IEEE Computer Society, Jun 2017.
The definitive version is available at https://doi.org/10.1109/ISBI.2017.7950497
Meeting Name
International Symposium on Biomedical Imaging (2015: Apr. 18-21, Melborne, Australia)
Department(s)
Computer Science
Keywords and Phrases
Cell Membranes; Fluorescence Microscopy; Iterative Methods; Medical Imaging; Neural Networks; Competitive Performance; Convolutional Neural Network; Event Classification; Event Identification; Image Patches; Iterative Searching; Vesicle Exocytosis; Vesicle Fusion; Convolution; Fusion Event Identification
International Standard Book Number (ISBN)
978-1509011711
International Standard Serial Number (ISSN)
1945-7928
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 IEEE Computer Society, All rights reserved.
Publication Date
01 Jun 2017