Flexible and Robust Co-Regularized Multi-Domain Graph Clustering

Abstract

Multi-view graph clustering aims to enhance clustering performance by integrating heterogeneous information collected in different do- mains. Each domain provides a different view of the data instances. Leveraging cross-domain information has been demonstrated an effective way to achieve better clustering results. Despite the previous success, existing multi-view graph clustering methods usually assume that different views are available for the same set of in- stances. Thus instances in different domains can be treated as having strict one-To-one relationship. In many real-life applications, however, data instances in one domain may correspond to multiple instances in another domain. Moreover, relationships between in- stances in different domains may be associated with weights based on prior (partial) knowledge. In this paper, we propose a flexible and robust framework, CGC (Co-regularized Graph Clustering), based on non-negative matrix factorization (NMF), to tackle these challenges. CGC has several advantages over the existing methods. First, it supports many-to-many cross-domain instance relation- ship. Second, it incorporates weight on cross-domain relationship. Third, it allows partial cross-domain mapping so that graphs in different domains may have different sizes. Finally, it provides users with the extent to which the cross-domain instance relationship violates the in-domain clustering structure, and thus enables users to re-evaluate the consistency of the relationship. Extensive experimental results on UCI benchmark data sets, newsgroup data sets and biological interaction networks demonstrate the effectiveness of our approach.

Meeting Name

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2013: Aug. 11-14, Chicago, IL)

Department(s)

Computer Science

Keywords and Phrases

Co-Regularization; Graph Clustering; Nonnegative Matrix Factorization

International Standard Book Number (ISBN)

978-145032174-7

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2013 Association for Computing Machinery (ACM), All rights reserved.

Publication Date

01 Aug 2013

Share

 
COinS