Abstract
In this work, we study energy-aware real-time scheduling of a set of sporadic Directed Acyclic Graph (DAG) tasks with implicit deadlines. While meeting all real-time constraints, we try to identify the best task allocation and execution pattern such that the average power consumption of the whole platform is minimized. To the best of our knowledge, this is the first work that addresses the power consumption issue in scheduling multiple DAG tasks on multi-cores and allows intra-task processor sharing. We first adapt the decomposition-based framework for federated scheduling and propose an energy-sub-optimal scheduler. Then we derive an approximation algorithm to identify processors to be merged together for further improvements in energy-efficiency and to prove the bound of the approximation ratio. We perform a simulation study to demonstrate the effectiveness and efficiency of the proposed scheduling. The simulation results show that our algorithms achieve an energy saving of 27% to 41% compared to existing DAG task schedulers.
Recommended Citation
Z. Guo et al., "Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks," Leibniz International Proceedings in Informatics, LIPIcs, vol. 76, pp. 221 - 2221, Dagstuhl Research Online Publication Server, Jun 2017.
The definitive version is available at https://doi.org/10.4230/LIPIcs.ECRTS.2017.22
Meeting Name
29th Euromicro Conference on Real-Time Systems (ECRTS 2017) (2017: Jun. 28-30, Dubrovnik, Croatia)
Department(s)
Computer Science
Research Center/Lab(s)
Intelligent Systems Center
Keywords and Phrases
Convex Optimization; Energy Minimization; Parallel Task; Real-Time Scheduling
International Standard Serial Number (ISSN)
1868-8969
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2017 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License
Publication Date
01 Jun 2017