A Fast Algorithm for Steiner Trees
Abstract
Given an undirected distance graph G=(V, E, d) and a set S, where V is the set of vertices in G, E is the set of edges in G, d is a distance function which maps E into the set of nonnegative numbers and S⊆V is a subset of the vertices of V, the Steiner tree problem is to find a tree of G that spans S with minimal total distance on its edges. In this paper, we analyze a heuristic algorithm for the Steiner tree problem. The heuristic algorithm has a worst case time complexity of O(|S||V|2) on a random access computer and it guarantees to output a tree that spans S with total distance on its edges no more than 2(1-1/l) times that of the optimal tree, where l is the number of leaves in the optimal tree.
Recommended Citation
L. T. Kou et al., "A Fast Algorithm for Steiner Trees," Acta Informatica, vol. 15, no. 2, pp. 141 - 145, Springer Verlag, Jun 1981.
The definitive version is available at https://doi.org/10.1007/BF00288961
Department(s)
Computer Science
International Standard Serial Number (ISSN)
0001-5903
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1981 Springer Verlag, All rights reserved.
Publication Date
01 Jun 1981