An Intelligent Early Warning System for Software Quality Improvement and Project Management
Abstract
One of the main reasons behind unfruitful software development projects is that it is often too late to correctthe problems by the time they are detected. It clearlyindicates the need for early warning about the potentialrisks. In this paper, we discuss an intelligent softwareearly warning system based on fuzzy logic using an integrated set of software metrics. It helps to assess risks associated with being behind schedule, over budget, andpoor quality in software development and maintenancefrom multiple perspectives. It handles incomplete,inaccurate, and imprecise information, and resolveconflicts in an uncertain environment in its software riskassessment using fuzzy linguistic variables, fuzzy sets, andfuzzy inference rules. Process, product, and organizational metrics are collected or computed based on solid software models. The intelligent risk assessment process consists of the following steps: fuzzification of software metrics, rule firing, derivation and aggregation of resulted risk fuzzy sets, and defuzzification of linguistic risk variables.
Recommended Citation
X. F. Liu et al., "An Intelligent Early Warning System for Software Quality Improvement and Project Management," Journal of Systems and Software, Elsevier, Jan 2006.
The definitive version is available at https://doi.org/10.1016/j.jss.2006.01.024
Department(s)
Computer Science
Keywords and Phrases
Intelligent Early Warning System; Fuzzification; Fuzzy Logic; Project Management; Software Development; Software Quality Improvement
International Standard Serial Number (ISSN)
0164-1212
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2006 Elsevier, All rights reserved.
Publication Date
01 Jan 2006