Abstract

Over-provisioned femtocell networks can be used to serve indoor locations that see high peak loads, such as airports or train stations. However, networks designed for high peak loads are mostly under-utilized, which is wasteful from an energy-use perspective. This paper introduces a femtocell selective activation problem. We motivate the use of selective activation in femtocell networks using real femtocell power measurements. We formally define the selective activation problem, and introduce GreenFemto, a distributed femtocell selective activation algorithm. We prove that GreenFemto converges to a locally Pareto optimal solution. Detailed simulations of an LTE wireless system are used to demonstrate the performance of GreenFemto. We find that GreenFemto uses up to 55% fewer femtocells to serve a given load, relative to an existing femtocell power-saving technique. Furthermore, we show that GreenFemto comes within 15% of a globally optimal solution. We conclude that selective activation can be successfully applied to femtocell networks to both reduce power consumption and reduce outage probabilities.

Department(s)

Computer Science

Comments

National Science Foundation, Grant 1355406

Keywords and Phrases

algorithms; Communication technologies; distributed algorithms; Mathematics; wireless communications; wireless networks

International Standard Serial Number (ISSN)

1536-1276

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Oct 2016

Share

 
COinS