Preference-Based Many-objective Evolutionary Testing Generates Harder Test Cases for Autonomous Agents

Abstract

Despite the high number of existing works in software testing within the SBSE community, there are very few ones that address the problematic of agent testing. The most prominent work in this direction is by Nguyen et al. [13], which formulates this problem as a bi-objective optimization problem to search for hard test cases from a robustness viewpoint. In this paper, we extend this work by: (1) proposing a new seven-objective formulation of this problem and (2) solving it by means of a preference-based many-objective evolutionary method. The obtained results show that our approach generates harder test cases than Nguyen et al. method ones. Moreover, Nguyen et al. method becomes a special case of our method since the user can incorporate his/her preferences within the search process by emphasizing some testing aspects over others. © 2013 Springer-Verlag.

Department(s)

Computer Science

Keywords and Phrases

Agent testing; many-objective optimization; user's preferences

International Standard Book Number (ISBN)

978-364239741-7

International Standard Serial Number (ISSN)

1611-3349; 0302-9743

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Springer, All rights reserved.

Publication Date

08 Oct 2013

Share

 
COinS