Abstract
Provisioning the capacity of wireless networks is difficult when peak load is significantly higher than average load, for example, in public spaces like airports or train stations. Service providers can use femtocells and small cells to increase local capacity, but deploying enough femtocells to serve peak loads requires a large number of femtocells that will remain idle most of the time, which wastes a significant amount of power. To reduce the energy consumption of over-provisioned femtocell networks, we formulate a femtocell selective activation problem, which we formalize as an integer nonlinear optimization problem. Then we introduce Green Femto, a distributed femtocell selective activation algorithm that deactivates idle femtocells to save power and activates them on-the-fly as the number of users increases. We prove that Green Femto converges to a locally Pareto optimal solution and demonstrate its performance using extensive simulations of an LTE wireless system. Overall, we find that Green Femto requires up to 55% fewer femtocells to serve a given user load, relative to an existing femtocell power-saving procedure, and comes within 15% of a globally optimal solution.
Recommended Citation
M. Lin et al., "Energy-efficient Selective Activation in Femtocell Networks," Proceedings - 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2015, pp. 361 - 369, article no. 7366951, Institute of Electrical and Electronics Engineers, Dec 2015.
The definitive version is available at https://doi.org/10.1109/MASS.2015.16
Department(s)
Computer Science
International Standard Book Number (ISBN)
978-146739100-9
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
28 Dec 2015
Comments
National Sleep Foundation, Grant CNS-1218597