Abstract

Domain Name System (DNS) tunneling is a well-known cyber-attack that allows data exfiltration - the attackers exploit this tunnel to extract sensitive information from the system. Advanced Persistent Threat (APT) attackers encapsulate malicious traffic in a DNS connection to elude security mechanisms such as Intrusion Detection System (IDS). Although different techniques have been implemented to detect these targeted attacks, their rise induces a threat to Cyber-Physical Systems (CPS). The DNS over HTTPS (DoH) tunnel detection is a challenge because the encrypted data prevents an analysis of DNS traffic content. In this paper, we present a novel detection system that identifies malicious DoH tunnels in real time. We study the normal traffic pattern and based on that, we define a profile. The objective of this system is to detect malicious activity on the system as early as possible through a lightweight packet by packet analysis based on a real-time IDS classifier. This system is evaluated on three available data sets and the results obtained are compared with a machine learning technique. We demonstrate that the identification of anomalous activity, in particular DoH tunnels, is possible by analyzing different traffic features.

Department(s)

Computer Science

Comments

National Science Foundation, Grant TED 2021-130369B-C32

Keywords and Phrases

APT; DNS tunnels; DoH traffic; encrypted traf-fic; Intrusion Detection System

International Standard Book Number (ISBN)

978-172819054-9

International Standard Serial Number (ISSN)

1550-3607

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jan 2024

Share

 
COinS