Abstract

Memory forensics is now a standard component of digital forensic investigations and incident response handling, since memory forensic techniques are quite effective in uncovering artifacts that might be missed by traditional storage forensics or live analysis techniques. Because of the crucial role that memory forensics plays in investigations and because of the increasing use of automation of memory forensics techniques, it is imperative that these tools be resilient to memory smear and deliberate tampering. Without robust algorithms, malware may go undetected, frameworks may crash when attempting to process memory samples, and automation of memory forensics techniques is difficult. In this paper we present Gaslight, a powerful and flexible fuzz-testing architecture for stress-testing both open and closed-source memory forensics frameworks. Gaslight automatically targets critical code paths that process memory samples and mutates samples in an efficient way to reveal implementation errors. In experiments we conducted against several popular memory forensics frameworks, Gaslight revealed a number of critical previously undiscovered bugs.

Department(s)

Computer Science

Publication Status

Open Access

Keywords and Phrases

Computer forensics; Fuzzing; Incident response; Malware; Memory analysis; Memory forensics

International Standard Serial Number (ISSN)

1742-2876

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Publication Date

01 Aug 2017

Share

 
COinS