Abstract

In the last few years, Federated Learning (FL) has received extensive attention from the research community because of its capability for privacy-preserving, collaborative learning from heterogeneous data sources. Most FL studies focus on either average performance improvement or the robustness to attacks, while some attempt to solve both jointly. However, the performance disparities across clients in the presence of attackers have largely been unexplored. In this work, we propose a novel Fair Federated Learning scheme with Attacker Detection capability (abbreviated as FFL+AD) to minimize performance discrepancies across benign participants. FFL+AD enables the server to identify attackers and learn their malign intent (e.g., targeted label) by investigating suspected models via top performers. This two-step detection method helps reduce false positives. Later, we introduce fairness by regularizing the benign clients' local objectives with a variable boosting parameter that gives more emphasis on low performers in optimization. Under standard assumptions, FFL+AD exhibits a convergence rate similar to FedAvg. Experimental results show that our scheme builds a more fair and more robust model, under label-flipping and backdoor attackers, compared to prior schemes. FFL+AD achieves competitive accuracy even when 40% of the clients are attackers.

Department(s)

Computer Science

Comments

National Science Foundation, Grant 2008878

International Standard Book Number (ISBN)

978-164368436-9

International Standard Serial Number (ISSN)

0922-6389

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 The Authors, All rights reserved.

Publication Date

28 Sep 2023

Share

 
COinS