No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects
Abstract
Convolutional Neural Networks (CNNs) Have Made Resounding Success in Many Computer Vision Tasks Such as Image Classification and Object Detection. However, their Performance Degrades Rapidly on Tougher Tasks Where Images Are of Low Resolution or Objects Are Small. in This Paper, We Point Out that This Roots in a Defective Yet Common Design in Existing CNN Architectures, Namely the Use of Strided Convolution And/or Pooling Layers, Which Results in a Loss of Fine-Grained Information and Learning of Less Effective Feature Representations. to This End, We Propose a New CNN Building Block Called SPD-Conv in Place of Each Strided Convolution Layer and Each Pooling Layer (Thus Eliminates Them Altogether). SPD-Conv is Comprised of a Space-To-Depth (SPD) Layer Followed by a Non-Strided Convolution (Conv) Layer, and Can Be Applied in Most If Not All CNN Architectures. We Explain This New Design under Two Most Representative Computer Vision Tasks: Object Detection and Image Classification. We Then Create New CNN Architectures by Applying SPD-Conv to YOLOv5 and ResNet, and Empirically Show that Our Approach Significantly Outperforms State-Of-The-Art Deep Learning Models, Especially on Tougher Tasks with Low-Resolution Images and Small Objects. We Have Open-Sourced Our Code at Https://github.com/LabSAINT/SPD-Conv.
Recommended Citation
R. Sunkara and T. T. Luo, "No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 13715 LNAI, pp. 443 - 459, Springer, Jan 2023.
The definitive version is available at https://doi.org/10.1007/978-3-031-26409-2_27
Department(s)
Computer Science
International Standard Book Number (ISBN)
978-303126408-5
International Standard Serial Number (ISSN)
1611-3349; 0302-9743
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Springer, All rights reserved.
Publication Date
01 Jan 2023