An Exploration into Dynamic Population Sizing
Abstract
Traditional evolutionary algorithms are powerful problem solvers that have several fixed parameters which require prior specification. Determining good values for any of these parameters can be difficult, as these parameters are generally very sensitive, requiring expert knowledge to set optimally without extensive use of trial and error. Parameter control is a promising approach to achieving this automation and has the added potential of increasing EA performance based on both theoretical and empirical evidence that the optimal values of EA strategy parameters change during the course of executing an evolutionary run. While many methods of parameter control have been published that focus on removing the population size parameter, μ, all hampered by a variety of problems. This paper investigates the benefits of making μ a dynamic parameter and introduces two novel methods for population control. These methods are then compared to state-of-the-art population sizing EAs, exploring the strengths and weaknesses of each.
Recommended Citation
J. E. Cook and D. R. Tauritz, "An Exploration into Dynamic Population Sizing," Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO '10, pp. 807 - 814, Association for Computing Machinery (ACM), Jan 2010.
The definitive version is available at https://doi.org/10.1145/1830483.1830624
Meeting Name
12th Annual Genetic and Evolutionary Computation Conference, GECCO-2010 (2010: Jul 7-11, Portland, Oregon)
Department(s)
Computer Science
Sponsor(s)
Missouri University of Science and Technology. Natural Computation Laboratory
Keywords and Phrases
Evolutionary Algorithm; Optimization; Parameter Control; Parameterless Evolutionary Algorithm; Population Sizing
International Standard Book Number (ISBN)
978-1450300728
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2010 Association for Computing Machinery (ACM), All rights reserved.
Publication Date
01 Jan 2010