An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound
Abstract
Because of the ever-increasing execution scale of scientific applications, how to store the extremely large volume of data efficiently is becoming a serious issue. A significant reduction of the scientific data size can effectively mitigate the I/O burden and save considerable storage space. Since lossless compressors suffer from limited compression ratios, error-controlled lossy compressors have been studied for years. Existing error-controlled lossy compressors, however, focus mainly on absolute error bounds, which cannot meet users' diverse demands such as pointwise relative error bounds. Although some of the state-of-the-art lossy compressors support pointwise relative error bound, the compression ratios are generally low because of the limitation in their designs and possible spiky data changes in local data regions. In this work, we propose a novel, efficient approach to perform compression based on the pointwise relative error bound with higher compression ratios than existing solutions provide. Our contribution is threefold. (1) We propose a novel transformation scheme that can transfer the pointwise relative-error-bounded compression problem to an absolute-error-bounded compression issue. We also analyze the practical properties of our transformation scheme both theoretically and experimentally. (2) We implement the proposed technique in two of the most popular absolute-error-bounded lossy compressors, SZ and ZFP. (3) We evaluate our solution using multiple real-world application data across different scientific domains on a supercomputer with up to 4,096 cores and 12 TB of data. Experiments show that our solution achieves over 1.38X dumping and 1.31X loading performance over the second-best lossy compressor, respectively.
Recommended Citation
X. Liang et al., "An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound," Proceedings of the IEEE International Conference on Cluster Computing, ICCC, pp. 179 - 189, Institute of Electrical and Electronics Engineers (IEEE), Oct 2018.
The definitive version is available at https://doi.org/10.1109/CLUSTER.2018.00036
Meeting Name
2018 IEEE International Conference on Cluster Computing, ICCC (2018: Sep. 10-13, Belfast, UK)
Department(s)
Computer Science
Keywords and Phrases
Lossy Compression; Point Wise Error Bound; Scientific Simulations
International Standard Book Number (ISBN)
978-153868319-4
International Standard Serial Number (ISSN)
1552-5244
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2018 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
29 Oct 2018
Comments
This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC.