Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to investigate the reproducibility and stability in the bacterial community structure of laboratory-scale sequencing batch bioreactors (SBR) and to assess the impact of solids retention time (SRT) on bacterial diversity. Two experiments were performed. In each experiment two sets of replicate SBRs were operated for a periods of three times the SRT. One set was operated at an SRT of 2 days and another set was operated at an SRT of 8 days. Samples for T-RFLP analysis were collected from the two sets of replicate reactors. HhaI, MspI, and RsaI T-RFLP profiles were analyzed using cluster analysis and diversity statistics. Cluster analysis with Ward's method using Jaccard distance and Hellinger distance showed that the bacterial community structure in both sets of reactors from both experimental runs was dynamic and that replicate reactors were clustered together and evolved similarly from startup. Richness (S), evenness (E), the Shannon-Weaver index (H), and the reciprocal of Simpson's index (1/D) were calculated, and the values were compared between the two sets of reactors. Evenness values were higher for reactors operated at an SRT of 2 days. Statistically significant differences in diversity (H and D) between the two sets of reactors were tested using a randomization procedure, and the results showed that reactors from both experimental runs that were operated at an SRT of 2 days had higher diversity (H and D) at the 5% level. T-RFLP analysis with diversity indices proved to be a powerful tool to analyze changes in the bacterial community diversity in response to changes in the operational parameters of activated-sludge systems.
Recommended Citation
P. E. Saikaly et al., "Use of 16S rRNA Gene Terminal Restriction Fragment Analysis to Assess the Impact of Solids Retention Time on the Bacterial Diversity of Activated Sludge," Applied and Environmental Microbiology, vol. 71, no. 10, pp. 5814 - 5822, American Society for Microbiology, Oct 2005.
The definitive version is available at https://doi.org/10.1128/AEM.71.10.5814-5822.2005
Department(s)
Civil, Architectural and Environmental Engineering
Keywords and Phrases
Activated sludge process; Bacteria; Bioreactors; Mathematical operators; Parameter estimation; RNA; Set theory; Statistical methods; Cluster analysis; Sequencing batch bioreactors (SBR); Solids retention time (SRT); Terminal restriction fragment length polymorphism (T-RFLP); Genes; ribosome RNA; RNA 16S; activated sludge; microbiology; analytic method; biodiversity; bioreactor; ecosystem; genetic analysis; nonhuman; reactor; restriction fragment length polymorphism; risk assessment; solid waste; statistical analysis; structure analysis; DNA; Bacterial; rRNA; Polymorphism; Restriction Fragment Length; Refuse Disposal; Reproducibility of Results; Ribosomal; 16S; Sewage; Variation (Genetics); Bacteria (microorganisms)
International Standard Serial Number (ISSN)
0099-2240
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2005 American Society for Microbiology, All rights reserved.
Publication Date
01 Oct 2005