Morphology of Hydrothermally Synthesized ZnO Nanoparticles Tethered to Carbon Nanotubes Affects Electrocatalytic Activity For H₂O₂ Detection
Abstract
We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H 2O2 concentrations was observed in the 1-20 mM concentration range.
Recommended Citation
M. B. Wayu et al., "Morphology of Hydrothermally Synthesized ZnO Nanoparticles Tethered to Carbon Nanotubes Affects Electrocatalytic Activity For H₂O₂ Detection," Electrochimica Acta, vol. 97, pp. 99 - 104, Elsevier, Jan 2013.
The definitive version is available at https://doi.org/10.1016/j.electacta.2013.02.028
Department(s)
Chemistry
International Standard Serial Number (ISSN)
0013-4686
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2013 Elsevier, All rights reserved.
Publication Date
01 Jan 2013