Lithographically Directed Assembly of One-Dimensional DNA Nanostructures via Bivalent Binding Interactions
Abstract
In order to exploit the outstanding physical properties of one-dimensional (1D) nanostructures such as carbon nanotubes and semiconducting nanowires and nanorods in future technological applications, it will be necessary to organize them on surfaces with precise control over both position and orientation. Here, we use a 1D rigid DNA motif as a model for studying directed assembly at the molecular scale to lithographically patterned nanodot anchors. by matching the inter-nanodot spacing to the length of the DNA nanostructure, we are able to achieve nearly 100% placement yield. by varying the length of single-stranded DNA linkers bound covalently to the nanodots, we are able to study the binding selectivity as a function of the strength of the binding interactions. We analyze the binding in terms of a thermodynamic model which provides insight into the bivalent nature of the binding, a scheme that has general applicability for the controlled assembly of a broad range of functional nanostructures.
Recommended Citation
R. Wang et al., "Lithographically Directed Assembly of One-Dimensional DNA Nanostructures via Bivalent Binding Interactions," Nano Research, vol. 6, no. 6, pp. 409 - 417, Tsinghua University Press, Jun 2013.
The definitive version is available at https://doi.org/10.1007/s12274-013-0318-6
Department(s)
Chemistry
Keywords and Phrases
1D Nanostructures; Bivalent Interactions; Directed Assembly; DNA Nanostructures
International Standard Serial Number (ISSN)
1998-0124
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2013 Tsinghua University Press, All rights reserved.
Publication Date
01 Jun 2013