Visualizing Chemical Interactions in Life Sciences with Wide-Field Fluorescence Microscopy towards the Single-Molecule Level


Systematic understanding of dynamic biological networks is grounded at the molecular level. Knowledge at this level will discover the functions of molecular components and their interactions with cells or among the molecules themselves. Single-molecule detection has proved to be an indispensable technique for characterizing molecular interactions in various physiological conditions. Among the single-molecule-detection methods, wide-field microscopy-based fluorescence imaging is unique in that dynamic single-molecule events can be vividly observed in a wide observation field. Such a technique has obvious advantages for direct tracking of the pathways and processes of molecular interactions and giving visual information about the molecular mechanisms of many biological events. We discuss experimental schemes and applications of wide-field fluorescence microscopy in characterizing biological molecular interactions and studying virus-cell or particle-cell interactions.



Keywords and Phrases

Fluorescence; Interaction; Single-molecule imaging; Wide-field microscopy; Cells; Fluorescence microscopy; Imaging techniques; Viruses; Molecular mechanisms; Molecular interactions; double stranded DNA; protein; capillary electrophoresis; chemical interaction; fluorescence resonance energy transfer; fluorescence spectroscopy; image analysis; immunoassay; molecular interaction; molecule; particle size; priority journal; reaction analysis; separation technique; virus cell interaction

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2007 Elsevier, All rights reserved.

Publication Date

01 Nov 2007