Location

Rolla, MO

Session Start Date

6-11-1999

Session End Date

6-17-1999

Keywords and Phrases

Early Warning; Fire Detection; Discriminating; Diesel Engine; Carbon Monoxide; Nitric Oxide; Ambient; Alarms

Abstract

Fire detection in underground coal mines using carbon monoxide (CO) based monitoring systems has been very effective in many mines. Many systems have been able to detect fires in early stages of development at very low CO levels. However in mines which use extensive diesel haulage and support vehicles, the systems have been less sensitive to early detection due to diesel exhaust contaminants elevating baseline CO levels. A new technology has been tested in two underground coal mines which is designed to discriminate between the CO produced by diesel engines and CO from a fire by correcting the CO concentration based on the nitric oxide (NO) concentration. This paper discusses the results of studies completed by MSHA at two of these underground coal mines. The technology employs a complex mathematical computation which is continually accomplished to improve fire detection capabilities for dieselized underground coal mines. Findings have shown the technology to be effective in significantly reducing levels for alarms while avoiding a "Chicken Little" complacency for nuisance alarms. This technology could be used for fire detection in any underground mines which utilize diesel equipment and carbon monoxide based fire detection systems.

Department(s)

Mining and Nuclear Engineering

Appears In

U.S. Mine Ventilation Symposium

Meeting Name

8th U.S. Mine Ventilation Symposium

Publisher

University of Missouri--Rolla

Publication Date

6-11-1999

Document Version

Final Version

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 11th, 12:00 AM Jun 17th, 12:00 AM

Evaluation of Discriminating Fire Sensors in Two Underground Coal Mines

Rolla, MO

Fire detection in underground coal mines using carbon monoxide (CO) based monitoring systems has been very effective in many mines. Many systems have been able to detect fires in early stages of development at very low CO levels. However in mines which use extensive diesel haulage and support vehicles, the systems have been less sensitive to early detection due to diesel exhaust contaminants elevating baseline CO levels. A new technology has been tested in two underground coal mines which is designed to discriminate between the CO produced by diesel engines and CO from a fire by correcting the CO concentration based on the nitric oxide (NO) concentration. This paper discusses the results of studies completed by MSHA at two of these underground coal mines. The technology employs a complex mathematical computation which is continually accomplished to improve fire detection capabilities for dieselized underground coal mines. Findings have shown the technology to be effective in significantly reducing levels for alarms while avoiding a "Chicken Little" complacency for nuisance alarms. This technology could be used for fire detection in any underground mines which utilize diesel equipment and carbon monoxide based fire detection systems.