Location
Rolla, Missouri
Session Dates
11 Jun 1999 - 17 Jun 1999
Keywords and Phrases
Computational Fluid Dynamics; Mine Fire; Smoke Spread; Flow Reversal
Abstract
A Computational Fluid Dynamics (CFD) program was used to model buoyancy induced Product-Of-Combustion (POC) spread from experimental fires in the National Institute For Occupational Safety And Health (NIOSH), Pittsburgh Research Laboratory (PRL), safety research coal mine. In one application, the CFD program was used to predict spread from fires in an entry under zero airflow conditions. At a location, 0.41 m below the entry's roof at a distance of 30 m from the fire, the measured smoke spread rates were 0.093 and 0.23 m/s for a 30 and a 296 kw fire, respectively. The CFD program predicted spread rates of 0.15 and 0.26 m/s based upon the measured fire heat production rates. Based upon a computation with c3h8 as the hydrocarbon fuel, a predicted 5 PPM co alert time of 70 s at a distance of 30 m from the fire is to be compared with the measured alert time of 148 s. In a second application, the CFD program was used to analyze smoke flow reversal conditions, and the results were compared with visual observations of smoke reversal for 12 diesel fuel fires. The CFD predictions were in qualitative agreement with visual observations of smoke reversal.
Department(s)
Mining Engineering
Meeting Name
8th U.S. Mine Ventilation Symposium
Publisher
University of Missouri--Rolla
Document Version
Final Version
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Edwards, J. C. and Hwang, C. C., "CFD Analysis of Mine Fire Smoke Spread and Reverse Flow Conditions" (1999). U.S. Mine Ventilation Symposium. 1.
https://scholarsmine.mst.edu/usmvs/8usmvs/8usmvs-theme12/1
CFD Analysis of Mine Fire Smoke Spread and Reverse Flow Conditions
Rolla, Missouri
A Computational Fluid Dynamics (CFD) program was used to model buoyancy induced Product-Of-Combustion (POC) spread from experimental fires in the National Institute For Occupational Safety And Health (NIOSH), Pittsburgh Research Laboratory (PRL), safety research coal mine. In one application, the CFD program was used to predict spread from fires in an entry under zero airflow conditions. At a location, 0.41 m below the entry's roof at a distance of 30 m from the fire, the measured smoke spread rates were 0.093 and 0.23 m/s for a 30 and a 296 kw fire, respectively. The CFD program predicted spread rates of 0.15 and 0.26 m/s based upon the measured fire heat production rates. Based upon a computation with c3h8 as the hydrocarbon fuel, a predicted 5 PPM co alert time of 70 s at a distance of 30 m from the fire is to be compared with the measured alert time of 148 s. In a second application, the CFD program was used to analyze smoke flow reversal conditions, and the results were compared with visual observations of smoke reversal for 12 diesel fuel fires. The CFD predictions were in qualitative agreement with visual observations of smoke reversal.