Location

Rolla, Missouri

Session Dates

11 Jun 1999 - 17 Jun 1999

Keywords and Phrases

Fully Mechanized Long-Wall; Top-Coal Caving Face; Gob; Mathematical Model; Spontaneous Combustion; Face Advancing

Abstract

Geological conditions allow, underground coal mines in China tend to use comprehensively mechanized roof-coal caving technique in an effort to gain a higher degree of mechanization at coal faces as well as higher coal production rates. As a face advances, a large amount of coal will be left behind in its gob area which may experience a self-enhancing process of coal oxidation and heat accumulation, ultimately leading to open fire. Such a self-enhancing coal spontaneous combustion process is a significantly impeding mine safety and productivity. A sound mathematical model is an important step to predict the probability of spontaneous combustion so that measures against coal self-heating can be adopted in time and at comparatively low cost. This paper analyzes main factors in coal spontaneous combustion process and proposes a mathematical model to describe the dynamic process of coal self-heating in the gob. This model has been applied to a coal production face in Datong Coal Region in Shangdong Province to satisfactorily predict the spontaneous combustion probability.

Department(s)

Mining Engineering

Meeting Name

8th U.S. Mine Ventilation Symposium

Publisher

University of Missouri--Rolla

Document Version

Final Version

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 11th, 12:00 AM Jun 17th, 12:00 AM

Gob Spontaneous Combustion in a Fully Mechanized Long-wall Top-Coal Caving Face

Rolla, Missouri

Geological conditions allow, underground coal mines in China tend to use comprehensively mechanized roof-coal caving technique in an effort to gain a higher degree of mechanization at coal faces as well as higher coal production rates. As a face advances, a large amount of coal will be left behind in its gob area which may experience a self-enhancing process of coal oxidation and heat accumulation, ultimately leading to open fire. Such a self-enhancing coal spontaneous combustion process is a significantly impeding mine safety and productivity. A sound mathematical model is an important step to predict the probability of spontaneous combustion so that measures against coal self-heating can be adopted in time and at comparatively low cost. This paper analyzes main factors in coal spontaneous combustion process and proposes a mathematical model to describe the dynamic process of coal self-heating in the gob. This model has been applied to a coal production face in Datong Coal Region in Shangdong Province to satisfactorily predict the spontaneous combustion probability.