Abstract

Particle Swarm Optimization (PSO) has been demonstrated to be a useful technique in target search applications such as Collective Robotic Search (CRS). A group of unmanned mobile robots are able to locate a specified target in a high risk environment with extreme efficiency when driven by an optimized PSO algorithm. This paper presents an algorithm for obstacle avoidance with the PSO approach applied to navigate robots in collective search applications. Obstacles represented by basic geometric shapes to simulate perilous ground terrain are introduced to the search area. Results are presented to show that PSO algorithm based CRS is able to locate targets avoiding hazardous pathways.

Meeting Name

IEEE Swarm Intelligence Symposium, 2006

Department(s)

Electrical and Computer Engineering

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Full Text Link

Share

 
COinS