Location
Rolla, Missouri
Session Dates
11 Jun 1999 - 17 Jun 1999
Keywords and Phrases
Mine Coal Fire; Smoke Detector; CO Detector; Diesel
Abstract
A series of four coal combustion experiments was conducted at the National Institute for Occupational Safety and Health's (NIOSH) Pittsburgh Research Laboratory (PRL) in the Safety Research Coal Mine (SRCM) to evaluate the response of fire sensors to a small 0.61 m square smoldering coal fire which transitions to flaming combustion in the presence of diesel emissions. An optical path smoke sensor alarmed earlier than a point type diffusion mode ionization smoke sensor, which alarmed prior to a co alert value of 5 PPM above ambient. The presence of steady state diesel emissions resulted in a decrease in the optical smoke sensor analog output voltage signal by less than 1.4 pet for the three coal fire experiments in which a diesel engine was operating, whereas the ionization smoke sensor output decreased between 10.8 and 26.7 pet after the initial surge of the diesel engine. A commercial diesel discriminating fire sensor did not alarm for a fire in the one experiment for which it was used. The results of the experiments demonstrated that an optical path smoke sensor might be used to detect a coal fire under the experimental conditions considered of starting a diesel engine followed by a slowly developing coal fire.
Department(s)
Mining Engineering
Meeting Name
8th U.S. Mine Ventilation Symposium
Publisher
University of Missouri--Rolla
Document Version
Final Version
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Edwards, J. C.; Franks, R. A.; Friel, G. F.; Lazzara, C. P.; and Opferman, J. J., "Mine Fire Detection in the Presence Of Diesel Emissions" (1999). U.S. Mine Ventilation Symposium. 5.
https://scholarsmine.mst.edu/usmvs/8usmvs/8usmvs-theme8/5
Mine Fire Detection in the Presence Of Diesel Emissions
Rolla, Missouri
A series of four coal combustion experiments was conducted at the National Institute for Occupational Safety and Health's (NIOSH) Pittsburgh Research Laboratory (PRL) in the Safety Research Coal Mine (SRCM) to evaluate the response of fire sensors to a small 0.61 m square smoldering coal fire which transitions to flaming combustion in the presence of diesel emissions. An optical path smoke sensor alarmed earlier than a point type diffusion mode ionization smoke sensor, which alarmed prior to a co alert value of 5 PPM above ambient. The presence of steady state diesel emissions resulted in a decrease in the optical smoke sensor analog output voltage signal by less than 1.4 pet for the three coal fire experiments in which a diesel engine was operating, whereas the ionization smoke sensor output decreased between 10.8 and 26.7 pet after the initial surge of the diesel engine. A commercial diesel discriminating fire sensor did not alarm for a fire in the one experiment for which it was used. The results of the experiments demonstrated that an optical path smoke sensor might be used to detect a coal fire under the experimental conditions considered of starting a diesel engine followed by a slowly developing coal fire.