Location

Rolla, Missouri

Session Dates

11 Jun 1999 - 17 Jun 1999

Keywords and Phrases

Electromagnetic Radiation (EMR); Acoustic Emission (AE); Coal Fracture; Coal and Methane Outburst; Rock Outburst

Abstract

Coal and methane outburst are catastrophic in coal mining, their prediction is difficult. In this paper, the electromagnetic radiation (EMR) generated during coal or rock deformation and fracturing is measured and analyzed. The results show that EMR truly exists during the fracture of coal or rock (with or without the presence of gas). It follows the Hurst statistical rule, and it basically exhibits gradually enhancing tendency during the process. The EMR strength and frequency are correlated to the coal or rock fracture process. Based on the experimental and theoretical studies, a new method for coal and methane outburst prediction is proposed -the EMR method. This new method significantly facilitates methane outburst prediction.

Department(s)

Mining Engineering

Meeting Name

8th U.S. Mine Ventilation Symposium

Publisher

University of Missouri--Rolla

Document Version

Final Version

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 11th, 12:00 AM Jun 17th, 12:00 AM

The General Characteristics of Electromagnetic Radiation During Coal Fracture and Its Application in Outburst Prediction

Rolla, Missouri

Coal and methane outburst are catastrophic in coal mining, their prediction is difficult. In this paper, the electromagnetic radiation (EMR) generated during coal or rock deformation and fracturing is measured and analyzed. The results show that EMR truly exists during the fracture of coal or rock (with or without the presence of gas). It follows the Hurst statistical rule, and it basically exhibits gradually enhancing tendency during the process. The EMR strength and frequency are correlated to the coal or rock fracture process. Based on the experimental and theoretical studies, a new method for coal and methane outburst prediction is proposed -the EMR method. This new method significantly facilitates methane outburst prediction.