Location

Rolla, Missouri

Session Dates

11 Jun 1999 - 17 Jun 1999

Keywords and Phrases

Monitoring Airflow Rate; Macroscopic Characteristics; Ventilation Network; Ventilation Transition Diagram; Evacuation Route; Non-steady Flow

Abstract

This paper presents a navigation system for spatio-temporal control of mine ventilation network to help keep miners safe in mine emergency situations such as mine fire, spontaneous combustion, and gas emission. The system is composed of sensors, computer simulation and binary controllers. The ventilation sensors are placed in specific branches of the ventilation network to monitor ventilation parameters such as air velocity. The Horonai coal mine, Hokkaido, Japan is used as an example to illustrate the applicability of the navigation system as on and in providing a safe evacuation route and to estimate the time interval to achieve steady airflow on and in determining distribution in the network.

Department(s)

Mining Engineering

Meeting Name

8th U.S. Mine Ventilation Symposium

Publisher

University of Missouri--Rolla

Document Version

Final Version

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 11th, 12:00 AM Jun 17th, 12:00 AM

A Navigating System for Ventilation Network Spatio-Temporal Control

Rolla, Missouri

This paper presents a navigation system for spatio-temporal control of mine ventilation network to help keep miners safe in mine emergency situations such as mine fire, spontaneous combustion, and gas emission. The system is composed of sensors, computer simulation and binary controllers. The ventilation sensors are placed in specific branches of the ventilation network to monitor ventilation parameters such as air velocity. The Horonai coal mine, Hokkaido, Japan is used as an example to illustrate the applicability of the navigation system as on and in providing a safe evacuation route and to estimate the time interval to achieve steady airflow on and in determining distribution in the network.