Location

Rolla, Missouri

Session Dates

11 Jun 1999 - 17 Jun 1999

Keywords and Phrases

Mine Ventilation; Longwall; Underground Mining; Coal; Pittsburgh Seam; Bleeder System; Network Modeling; Internal Bleeder; Three-Entry Development; Longwall Face Air Quantity; Fan Pressure; Longwall Gob; High-Pressure Bleeder Fans

Abstract

Rapid development in longwall mining technology has brought significant changes in panel layout and geometry. These changes require adaptations in the ventilation system to provide sufficient air quantities in longwall face and bleeder areas. At CONSOL, various longwall bleeder systems in the Pittsburgh No. 8 Seam have been studied with detailed ventilation surveys. Computer model network simulations were conducted from these surveys to study the effects of different bleeder configurations and ventilation adjustments. This paper examines the relationships between the longwall face air quantity and the convergence in the tailgate-to-bleeder entries, number of development entries, bleeder fan pressure and the tailgate ventilation scheme. It shows that, using conventional ventilation patterns, the face air quantity may be limited if the gob caves tightly. In such cases, modification of the ventilation pattern to an internal bleeder system, combined with appropriate tailgate ventilation and higher bleeder fan pressure may be required. Experience in CONSOL's operations has proven this method successful especially in mines that changed from four-entry to three-entry longwall development.

Department(s)

Mining Engineering

Meeting Name

8th U.S. Mine Ventilation Symposium

Publisher

University of Missouri--Rolla

Document Version

Final Version

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

 
COinS
 
Jun 11th, 12:00 AM Jun 17th, 12:00 AM

Developments in Longwall Ventilation

Rolla, Missouri

Rapid development in longwall mining technology has brought significant changes in panel layout and geometry. These changes require adaptations in the ventilation system to provide sufficient air quantities in longwall face and bleeder areas. At CONSOL, various longwall bleeder systems in the Pittsburgh No. 8 Seam have been studied with detailed ventilation surveys. Computer model network simulations were conducted from these surveys to study the effects of different bleeder configurations and ventilation adjustments. This paper examines the relationships between the longwall face air quantity and the convergence in the tailgate-to-bleeder entries, number of development entries, bleeder fan pressure and the tailgate ventilation scheme. It shows that, using conventional ventilation patterns, the face air quantity may be limited if the gob caves tightly. In such cases, modification of the ventilation pattern to an internal bleeder system, combined with appropriate tailgate ventilation and higher bleeder fan pressure may be required. Experience in CONSOL's operations has proven this method successful especially in mines that changed from four-entry to three-entry longwall development.