Chromium Doping of the Topological Insulator Antimony Telluride
Department
Physics
Major
Physics
Research Advisor
Hor, Yew San
Advisor's Department
Physics
Abstract
Topological insulators (TI’s) are recently discovered quantum states of matter characterized by an insulating bulk paired with conducting surface states such that electronic conduction occurs only across edges and surfaces. In these experiments we investigate the effect of chromium doping on the TI antimony telluride. The interesting applications involved with TI’s rely on the presence of the anomalous quantum hall effect (AQHE) in the sample. Previous experiments demonstrate that chromium-doping of antimony telluride can produce this effect in thin film samples. Here, we expand on the previous experiments to a.) determine if the effect can be produced in bulk samples and b.) more precisely determine the effects of the doping on the host material. Results indicated that the AQHE could likely be observed with further tuning of doping ratios; our samples exhibiting an anomalous hall effect that is “nearly quantized”.
Biography
Jack Crewse is a senior undergraduate in physics who has worked with Dr. Hor and his team since 2013.
Research Category
Sciences
Presentation Type
Poster Presentation
Document Type
Poster
Location
Upper Atrium/Hall
Presentation Date
15 Apr 2015, 9:00 am - 11:45 am
Chromium Doping of the Topological Insulator Antimony Telluride
Upper Atrium/Hall
Topological insulators (TI’s) are recently discovered quantum states of matter characterized by an insulating bulk paired with conducting surface states such that electronic conduction occurs only across edges and surfaces. In these experiments we investigate the effect of chromium doping on the TI antimony telluride. The interesting applications involved with TI’s rely on the presence of the anomalous quantum hall effect (AQHE) in the sample. Previous experiments demonstrate that chromium-doping of antimony telluride can produce this effect in thin film samples. Here, we expand on the previous experiments to a.) determine if the effect can be produced in bulk samples and b.) more precisely determine the effects of the doping on the host material. Results indicated that the AQHE could likely be observed with further tuning of doping ratios; our samples exhibiting an anomalous hall effect that is “nearly quantized”.