Dynamics At a Smeared Phase Transition
Abstract
We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.
Recommended Citation
B. Fendler et al., "Dynamics At a Smeared Phase Transition," Journal of Physics A, Institute of Physics - IOP Publishing, Mar 2005.
The definitive version is available at https://doi.org/10.1088/0305-4470/38/11/003
Department(s)
Physics
Sponsor(s)
National Science Foundation (U.S.)
University of Missouri Research Board
Keywords and Phrases
Condensed matter; Ising model; Phase transformations (Statistical physics)
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2005 Institute of Physics - IOP Publishing, All rights reserved.
Publication Date
01 Mar 2005