Double-Resonance G-factor Measurements by Quantum Jump Spectroscopy
Abstract
With the advent of high-precision frequency combs that can bridge large frequency intervals, new possibilities have opened up for the laser spectroscopy of atomic transitions. Here, it is shown that laser spectroscopic techniques can also be used to determine the ground-state g factor of a bound electron. The proposal is based on a double-resonance experiment, where the spin state of a ground-state electron is constantly being read out by laser excitation to the atomic L shell, while the spin flip transitions are being induced simultaneously by a resonant microwave field, leading to the detection of the quantum jumps between the ground-state Zeeman sublevels. The magnetic moments of electrons in light hydrogen-like ions could thus be measured with advanced laser technology. Corresponding theoretical predictions are also presented.
Recommended Citation
W. Quint et al., "Double-Resonance G-factor Measurements by Quantum Jump Spectroscopy," Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 87, no. 1, pp. 30 - 34, Maik Nauka-Interperiodica Publishing, Jan 2008.
The definitive version is available at https://doi.org/10.1007/s11448-008-1008-6
Department(s)
Physics
International Standard Serial Number (ISSN)
0021-3640
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2008 Maik Nauka-Interperiodica Publishing, All rights reserved.
Publication Date
01 Jan 2008