Generalized Householder Transformations for the Complex Symmetric Eigenvalue Problem

Abstract

We present an intuitive and scalable algorithm for the diagonalization of complex symmetric matrices, which arise from the projection of pseudo-Hermitian and complex scaled Hamiltonians onto a suitable basis set of "trial" states. The algorithm diagonalizes complex and symmetric (non-Hermitian) matrices and is easily implemented in modern computer languages. It is based on generalized Householder transformations and relies on iterative similarity transformations T → T' = QTT Q, where Q is a complex and orthogonal, but not unitary, matrix, i.e.QT = Q-1 but Q+ ≠ Q-1. We present numerical reference data to support the scalability of the algorithm. We construct the generalized Householder transformations from the notion that the conserved scalar product of eigenstates ψn and ψm of a pseudo-Hermitian quantum mechanical Hamiltonian can be reformulated in terms of the generalized indefinite inner product ∫ dxψn(x, t) ψm(x, t), where the integrand is locally defined, and complex conjugation is avoided. A few example calculations are described which illustrate the physical origin of the ideas used in the construction of the algorithm.

Department(s)

Physics

International Standard Serial Number (ISSN)

2190-5444

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2013 Springer Verlag, All rights reserved.

Publication Date

01 Aug 2013

Share

 
COinS