Abstract

Structural and magnetic properties of La0.7Sr0.3Mn1-xCrxO3 (0 < x ≤ 0.7) have been studied in order to determine the effect of substitution of Cr3+ for Mn3+. The data consist of neutron and x-ray powder-diffraction and magnetization measurements. We previously suggested these systems transition from ferromagnetic to antiferromagnetic ordering with the intermediate concentrations containing coexisting ferromagnetic and antiferromagnetic domains. Upon further detailed examination, we find that the neutron data can be fit using a single homogeneous long-range magnetically ordered state and compositionally dependent charge ordering. The magnetic structures are controlled by the competition between Mn-Mn, Mn-Cr, and Cr-Cr interactions (double exchange and superexchange). The metal to semimetal and semimetal to insulator transitions can be quantitatively described as due to the localization effect of superexchange. The presence of charge ordered states in the insulating region arises from the favorable energetics of Mn4+-O-Cr3+ superexchange bonds relative to Mn3+-O-Cr3+ bonds.

Department(s)

Physics

Second Department

Chemistry

International Standard Serial Number (ISSN)

1098-0121

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 American Physical Society (APS), All rights reserved.

Publication Date

01 Feb 2016

Share

 
COinS