Peculiarities of Antiferromagnetic Ordering in Orthorhombic LiMnO₂
Abstract
Data on the antiferromagnetic ordering in orthorhombic lithium manganite LiMnO 2 are obtained from magnetic-susceptibility, calorimetry, and nuclear magnetic resonance studies. The minimal hysteresis and the absence of jumps in the temperature dependences of the sublattice magnetization M ( T ) and the magnetic susceptibility near T N indicate that the ordering occurs through a continuous second-order phase transition. within the critical temperature range, the M ( T - T N ) variation is satisfactorily described by a power-law dependence with a critical exponent β = 0.25(4), which is substantially smaller than that predicted for 3D magnetic systems with isotropic Heisenberg exchange. The band structure of orthorhombic LiMnO 2 is calculated using the LMTO-ASA method. Taking into account the spin states of manganese ions, an adequate pattern is obtained for the density-of-states distribution with an energy gap near the Fermi level (~0.7 eV), which is in agreement with the measured electrical parameters of lithium manganite. The calculations demonstrate that the exchange interactions between Mn 3+ ions leading to antiferromagnetic ordering are significantly anisotropic. It is found that small paramagnetic regions persist in the manganite below the Néel temperature, and it is concluded that the reason for this is partial structural disordering of LiMnO 2 . As a result, a certain fraction of the manganese positions is occupied by lithium ions (Li Mn ) and vise versa (Mn Li ). These defects are not involved in the formation of the ordered magnetic structure and compose a paramagnetic fraction.
Recommended Citation
D. G. Kellerman et al., "Peculiarities of Antiferromagnetic Ordering in Orthorhombic LiMnO₂," Physics of the Solid State, MAIK/ Pattern Recognition and Image Analysis, Jul 2008.
The definitive version is available at https://doi.org/10.1134/S1063783408070160
Department(s)
Physics
Keywords and Phrases
Lithium Manganite; Antiferromagnetism; Calorimetry; Magnetic susceptibility; Nuclear magnetic resonance
International Standard Serial Number (ISSN)
1063-7834
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2008 MAIK/ Pattern Recognition and Image Analysis, All rights reserved.
Publication Date
01 Jul 2008