Cu(Ir₁₋ₓCrₓ)₂ S₄: A Model System for Studying Nanoscale Phase Coexistence at the Metal-Insulator Transition
Abstract
Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 - x Crx)2 S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir 4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states.
Recommended Citation
E. S. Bozin et al., "Cu(Ir₁₋ₓCrₓ)₂ S₄: A Model System for Studying Nanoscale Phase Coexistence at the Metal-Insulator Transition," Scientific Reports, vol. 4, Nature Publishing Group, Feb 2014.
The definitive version is available at https://doi.org/10.1038/srep04081
Department(s)
Physics
International Standard Serial Number (ISSN)
2045-2322
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2014 Nature Publishing Group, All rights reserved.
Publication Date
01 Feb 2014