Abstract
The experimental vapor phase nucleation data of Nuth et al., for silver [J. A. Nuth, K. A. Donnelly, B. Donn, and L. U. Lilleleht, J. Chem. Phys. 77, 2639 (1982)] and SiO [J. A. Nuth and B. Donn, J. Chem. Phys. 85, 1116 (1986)] are reanalyzed using a scaled model for homogeneous nucleation [B. N. Hale, Phys. Rev. A 33, 4156 (1986)]. The approximation is made that the vapor pressure at the nucleation site is not diminished significantly from that at the source (crucible). It is found that the data for ln S have a temperature dependence consistent with the scaled theory ln S≈ΓΩ3/2 [Tc /T-1]3/2, and predict critical temperatures 3800 ± 200 K for silver and 3700 ± 200 K for SiO. One can also extract an effective excess surface entropy per atom Ω = 2.1 ± 0.1 and an effective surface tension σ ≈ 1500 - 0.45 T ergs/cm2 for the small silver clusters (assuming a range of nucleation rates from 105 to 1011 cm-3 s-1). The corresponding values for SiO are Ω ≈ 1.7 ± 0.1 and σ ≈ 820 - 0.22 T ergs/cm2 (assuming a range of nucleation rates from 109 to 1012 cm-3 s-1).
Recommended Citation
B. N. Hale et al., "Analysis of Experimental Nucleation Data for Silver and SiO Using Scaled Nucleation Theory," Journal of Chemical Physics, vol. 91, no. 7, pp. 4314 - 4317, American Institute of Physics (AIP), Oct 1989.
The definitive version is available at https://doi.org/10.1063/1.456812
Department(s)
Physics
International Standard Serial Number (ISSN)
0021-9606
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1989 American Institute of Physics (AIP), All rights reserved.
Publication Date
01 Oct 1989