Abstract

Three methods for computing thermal conductivity from lattice dynamics (the iterative method, the variational method, and the relaxation-time approximation) are compared for the prototypical case of solid argon. The iterative method is found to produce results in close agreement with Green-Kubo molecular-dynamics simulations, a formally correct method for computing thermal conductivity. The variational method and relaxation-time approximation are found to underestimate the thermal conductivity. The relationship among the methods is established; a combination of the iterative and variational methods is found to have a fastest convergence. Formal convergence of the iterative method is demonstrated and a simple mixing rule is shown to provide stability in practice. The ability to use these methods to provide detailed insight into the relationship between phonon properties and thermal conductivity is demonstrated.

Department(s)

Physics

International Standard Serial Number (ISSN)

1098-0121

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2010 American Physical Society (APS), All rights reserved.

Publication Date

01 Oct 2010

Included in

Physics Commons

Share

 
COinS