Abstract
We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either -10° or -15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing the limitations of the theoretical calculations. This study in turn facilitates an improved understanding of the dynamics in the ionization process.
Recommended Citation
J. D. Builth-Williams et al., "Dynamical (e,2e) Studies of Tetrahydropyran and 1,4-Dioxane," Journal of Chemical Physics, vol. 140, no. 21, American Institute of Physics (AIP), Jan 2014.
The definitive version is available at https://doi.org/10.1063/1.4880204
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Angular Distribution; Ethers; Impact Ionization; Coplanar Kinematics; Ejected Electrons; Electron-Impact Ionization; Highest Occupied Molecular Orbital; Incident Electrons; Ionization Process; Theoretical Calculations; Theoretical Modeling; Polyols; 1,4-Dioxane; Dioxane Derivative; Pyran Derivative; Biomechanics; Chemistry; Electron; Quantum Theory; Thermodynamics; Biomechanical Phenomena; Dioxanes; Electrons; Pyrans; Quantum Theory; Thermodynamics
International Standard Serial Number (ISSN)
0021-9606
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2014 American Institute of Physics Inc., All rights reserved.
Publication Date
01 Jan 2014