Abstract
We investigate the influence of time-varying environmental noise, i.e., temporal disorder, on the nonequilibrium phase transition of the contact process. Combining a real-time renormalization group, scaling theory, and large scale Monte-Carlo simulations in one and two dimensions, we show that the temporal disorder gives rise to an exotic critical point. At criticality, the effective noise amplitude diverges with increasing time scale, and the probability distribution of the density becomes infinitely broad, even on a logarithmic scale. Moreover, the average density and survival probability decay only logarithmically with time. This infinite-noise critical behavior can be understood as the temporal counterpart of infinite-randomness critical behavior in spatially disordered systems, but with exchanged roles of space and time. We also analyze the generality of our results, and we discuss potential experiments.
Recommended Citation
H. Barghathi et al., "Contact Process with Temporal Disorder," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 94, no. 2, American Physical Society (APS), Aug 2016.
The definitive version is available at https://doi.org/10.1103/PhysRevE.94.022111
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Group Theory; Intelligent Systems; Monte Carlo Methods; Statistical Mechanics; Critical Behavior; Disordered System; Environmental Noise; Logarithmic Scale; Nonequilibrium Phase Transitions; Renormalization Group; Scaling Theories; Survival Probabilities; Probability Distributions
International Standard Serial Number (ISSN)
1539-3755
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2016 American Physical Society (APS), All rights reserved.
Publication Date
01 Aug 2016