Anisotropy in Oxidation of Zirconium Surfaces from Density Functional Theory Calculations
Abstract
This work uses density functional theory calculations to analyze the energy barriers for oxygen migration into the basal and prismatic surfaces of zirconium. Specifically, the migration energy barriers between each octahedral site and tetrahedral site in the basal surface, prism surface, and the bulk are determined. The possible oxygen migration paths in each system are also analyzed. Oxygen has higher energy barriers to penetrating the basal surface than the prism surface. It also has a lower energy barrier to escape from basal surface than from the prism surface. This is consistent with the experimental observation that the prism plane of zirconium oxidizes more quickly than the basal plane.
Recommended Citation
T. Chiang et al., "Anisotropy in Oxidation of Zirconium Surfaces from Density Functional Theory Calculations," Computational Materials Science, vol. 98, pp. 112 - 116, Elsevier, Feb 2015.
The definitive version is available at https://doi.org/10.1016/j.commatsci.2014.10.052
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Energy Barriers; Oxidation; Oxygen; Prisms; Zirconium; DFT; Higher-Energy Barriers; Lower Energy Barriers; Migration Energy; NEB; Octahedral Sites; Oxygen Migration; Tetrahedral Sites; Density Functional Theory
International Standard Serial Number (ISSN)
0927-0256
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Elsevier, All rights reserved.
Publication Date
01 Feb 2015