Abstract
Order-disorder phase transitions in magnetic metals that occur at zero temperature have been studied in great detail. Theorists have advanced scenarios for these quantum critical systems in which the unusual response can be seen to evolve from a competition between ordering and disordering tendencies, driven by quantum fluctuations. Unfortunately, there is a potential disconnect between the real systems that are being studied experimentally, and the idealized systems that theoretical scenarios are based upon. Here we discuss how disorder introduces a change in morphology from a three-dimensional system to a collection of magnetic clusters, and we present neutron scattering data on a classical system, Li[Mn1.96Li0.04]O4, that show how magnetic clusters by themselves can lead to scaling laws that mimic those observed in quantum critical systems.
Recommended Citation
J. Lamsal et al., "The Search for Quantum Critical Scaling in a Classical System," Journal of Applied Physics, American Institute of Physics (AIP), Jan 2009.
The definitive version is available at https://doi.org/10.1063/1.3068409
Department(s)
Physics
Sponsor(s)
United States. Department of Energy
University of Missouri Research Board
Keywords and Phrases
Fluctuations; Lithium Compounds; Magetic Structure; Magnetic Transitions; Neutron Diffraction; Order-Disorder Transformations
International Standard Serial Number (ISSN)
0021-8979
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2009 American Institute of Physics (AIP), All rights reserved.
Publication Date
01 Jan 2009