Abstract

Currently there is no accurate theoretical approach available for treating fully differential cross sections (FDCS) for low-energy electron-impact ionization of large molecules. For high incident energies, the plane wave impulse approximation (PWIA) generally yields good agreement with experimental data. In this paper, the distorted wave impulse approximation (DWIA) is used to calculate FDCS for low-energy electron-impact ionization of N2. To perform the necessary average over all molecular orientations, we propose an orientation average (OA) approximation. Although the DWIA results represent an improvement over the PWIA for intermediate energies, an improved theory is necessary for lower energies. However, the OA approximation will greatly simplify the evaluation of improved theories for lower energies.

Department(s)

Physics

Sponsor(s)

National Science Foundation (U.S.)

Keywords and Phrases

Differential cross sections; Electron impact ionization

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2005 American Physical Society (APS), All rights reserved.

Publication Date

01 Jan 2005

Included in

Physics Commons

Share

 
COinS