Abstract
We present Monte Carlo simulations of a two-dimensional bilayer quantum Heisenberg antiferromagnet with random dimer dilution. In contrast with exotic scaling scenarios found in other random quantum systems, the quantum phase transition in this system is characterized by a finite-disorder fixed point with power-law scaling. After accounting for corrections to scaling, with a leading irrelevant exponent of ω ≈ 0.48, we find universal critical exponents z = 1.310(6) and ν = 1.16(3). We discuss the consequences of these findings and suggest new experiments.
Recommended Citation
R. Sknepnek et al., "Exotic versus Conventional Scaling and Universality in a Disordered Bilayer Quantum Heisenberg Antiferromagnet," Physical Review Letters, vol. 93, no. 9, American Physical Society (APS), Aug 2004.
The definitive version is available at https://doi.org/10.1103/PhysRevLett.93.097201
Department(s)
Physics
Keywords and Phrases
Monte Carlo Methods; Antiferromagnetic Materials; Hamiltonians; Phase Transitions; Random Processes; Computer simulation; Dimers; Fermions; Mathematical models; Parameter estimation
International Standard Serial Number (ISSN)
0031-9007
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 American Physical Society (APS), All rights reserved.
Publication Date
27 Aug 2004