Author

Q. N. Sun
L. S. Geng
X. Li
L. Chen
H. Liu
Y. Wang
F. R. Zhu
Y. Zhang
Zhen Cao
F. Aharonian
Q. An
Axikegu
L. X. Bai
Y. X. Bai
L. X. Bai
Y. X. Bai
Y. W. Bao
D. Bastieri
X. J. Bi
Y. J. Bi
H. Cai
J. T. Cai
Zhe Cao
J. Chang
J. F. Chang
B. M. Chen
E S. Chen
J. Chen
Liang Chen
Liang Chen
Long Chen
M. J. Chen
M. L. Chen
Q. H. Chen
S. H. Chen
S. Z. Chen
T. L, Chen
X. L. Chen
Y. Chen
N. Cheng
Y. D. Cheng
S. W. Cui
X. H. Cui
Y. D. Cui
B. D'Ettorre Piazzoli
B. Z. Dai
H. L. Dai
Z. G. Dai
Danzen gluobu
D. della Volpe
X. J. Dong
K. K. Duan
J. H. Fan
Y. Z. Fan
Z. X. Fan
J. Fang
K. Fang
C. F. Feng
L. Feng
S. H. Feng
Y. L. Feng
B. Gao
C. D. Gao
L. Q. Gao
Q. Gao
W. Gao
M. M. Ge
L. S. Geng
G. H. Gong
Q. B. Gou
M. H. Gu
F. L. Guo
J. G. Guo
X. L. Guo
Y. Q. Guo
Y. Y. Guo
Y. A. Han
H. H. He
H. N. He
J. C. He
S. L. He
X. B. He
Y. He
M. Heller
Y. K. Hor
C. Hou
H. B. Hu
S. Hu
S. C. Hu
D. H. Huang
Q. L. Huang
W. H. Huang
X. T. Huang
X. Y. Huang
Z. C. Huang
F. Ji
X. L. Ji
H. Y. Jia
K. Jiang
Z. J. Jiang
C. Jin
T. Ke
D. Kuleshov
K. Levochkin
B. B. Li
Cheng Li
Cong Li
F. Li
H. B. Li
H. C. Li
H. Y. Li
J. Li
K. Li
W. L. Li
X. R. Li
Xin Li
Xin Li
Y. Li
Y. Z. Li
Zhe Li
Zhuo Li
E. W. Liang
Y. F. Liang
S. J. Lin
B. Liu
C. Liu
D. Liu
H. Liu
H. D. Liu
J. Liu
J. L. Liu
J. S. Liu
J. Y. Liu
M. Y. Liu
R. Y. Liu
S. M. Liu
W. Liu
Y. Liu
Y. N. Liu
Z. X. Liu
W. J. Long
R. Lu
H. K. Lv
B. Q. Ma
L. L. Ma
X. H. Ma
J. R. Mao
A. Masood
Z. Min
W. Mitthumsiri
T. Montaruli
Y. C. Nan
B. Y. Pang
P. Pattarakijwanich
Z. Y. Pei
M. Y. Qi
Y. Q. Qi
B. Q. Qiao
J. J. Qin
D. Ruffolo
V. Rulev
A. Saiz
L. Shao
O. Shchegolev
X. D. Sheng
J. Y. Shi
H. C. Song
Yu. V. Stenkin
V. Stepanov
Y. Su
Q. N. Sun
X. N. Sun
Z. B. Sun
P. H. T. Tam
Z. B. Tang
W. W. Tian
B. D. Wang
C. Wang
H. Wang
H. G. Wang
J. C. Wang
J. S. Wang
L. P. Wang
L. Y. Wang
R. N. Wang
W. Wang
W. Wang
X. G. Wang
Xiaojie Wang, Missouri University of Science and TechnologyFollow
X. Y. Wang
Y. Wang
Y. D. Wang
Y. J. Wang
Y. P. Wang
Z. H. Wang
Z. X. Wang
Zhen Wang
Zheng Wang
D. M. Wei
J. J. Wei
Y. J. Wei
T. Wen
C. Y. Wu
H. R. Wu
S. Wu
W. X. Wu
X. F. Wu
S. Q. Xi
J. Xia
J. J. Xia
G. M. Xiang
D. X. Xiao
G. Xiao
H. B. Xiao
G. G. Xin
Y. L. Xin
Y. Xing
D. L. Xu
R. X. Xu
L. Xue
D. H. Yan
J. Z. Yan
C. W. Yang
F. F. Yang
J. Y. Yang
L. L. Yang
M. J. Yang
R. Z. Yang
S. B. Yang
Y. H. Yao
Z. G. Yao
Y. M. Ye
L. Q. Yin
N. Yin
X. H. You
Z. Y. You
Y. H. Yu
Q. Yuan
H. D. Zeng
T. X. Zeng
W. Zeng
Z. K. Zeng
M. Zha
X. X. Zhai
B. B. Zhang
H. M. Zhang
J. L. Zhang
J. W. Zhang
L. X. Zhang
Li Zhang
Lu Zhang
P. F. Zhsng
P. P. Zhang
R. Zhang
S. R. Zhang
S. S. Zhang
X. Zhang
X. P. Zhang
Y. F. Zhang
Y. l. Zhang
Yi Zhang
Yong Zhang
B. Zhao
J. Zhao
L. Zhao
L. Z. Zhao
S. P. Zhao
F. Zheng
Y. Zheng
B. Zhou
H. Zhou
J. N. Zhou
P. Zhou
R. Zhou
X. X. Zhou
C. G. Zhu
F. R. Zhu
H. Zhu
K. J. Zhu
X. Zuo

Abstract

The atmospheric quality plays an important role in the air shower observation by the Wide Field-of-view Cherenkov Telescope Array (WFCTA) of LHAASO. A YAG imaging lidar system was developed to continuously monitor the calorimetric information. The accuracy of atmospheric monitoring is dependent on the pulse energy, the YAG lasers beam parameters and the angular repeatability of a High-precision 3D lifting Rotating Platform (HiRoP). Therefore, we designed an optical system for this lidar with a beam splitter to divide the laser beam into a reference beam and a calibrating beam with a certain ratio and coupled the beam paths with the movement of HiRoP. Thus, every pulse energy of the calibrating beam, which has the same energy fluctuation with respect to the reference beam recorded by a power meter, could be calculated by the ratio of the two beams. Great cares were also taken to characterize the beam size, polarization and divergence of the laser. Meanwhile, a high-precision home-made thermotank was designed to control the temperature and humidity to improve the performance and stability of our laser system, which resulting in a thermal fluctuation less than 2 C inside the container in the winter at an altitude of 4410 m. As a result, the pulse energy fluctuation of the laser beam for calibration was improved from 5 % to less than 2 %. As a result, we have successfully attained distinguishable full-WFCTA-view scanning Laser images in different air conditions, which could be used for the atmospheric quality analysis in further.

Department(s)

Physics

Publication Status

Open Access

Comments

National Natural Science Foundation of China, Grant 11947404

Keywords and Phrases

atmosphere monitoring; LHAASO; YAG-Lidar system

International Standard Serial Number (ISSN)

1824-8039

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Sissa Medialab Srl, All rights reserved.

Publication Date

18 Mar 2022

Share

 
COinS