Author

T. Capistrán
K. L. Fan
J. T. Linnemann
J. T. Linnemann
I. Torres
P. M. Saz Parkinson
Philip L.H. Yu
A. U. Abeysekara
A. Albert
R. Alfaro
C. Alvarez
J. D. Álvarez
J. R. Angeles Camacho
J. C. Arteaga-Velázquez
K. P. Arunbabu
D. Avila Rojas
H. A. Ayala Solares
R. Babu
V. Baghmanyan
A. S. Barber
J. Becerra Gonzalez
E. Belmont-Moreno
S. Y. BenZvi
D. Berley
C. Brisbois
K. S. Caballero-Mora
T. Capistran
A. Carraminana
S. Casanova
O. Chaparro-Amaro
U. Cotti
J. Cotzomi
S. Coutino de Leon
E. De la Fuente
C. de Leon
L. Diaz-Cruz
R. Diaz Hernandez
J. C. Diaz-Velez
B. L. Dingus
M. Durocher
M. A. DuVernois
R. W. Ellsworth
K. Engel
C. Espinoza
K. L. Fan
K. Fang
M. Fernandez Alonso
B. Fick
H. Fleischhack
J. L. Flores
N. I. Fraija
D. Garcia
J. A. Garcia-Gonzalez
J. L. Garcia-Luna
G. Garcia-Torales
F. Garfias
H. Goksu
M. M. Gonzalez
J. A. Goodman
J. P. Harding
S. Hernandez
I. Herzog
J. Hinton
B. Hona
D. Huang
F. Hueyotl-Zahuantitla
C. M. Hui
B. Humensky
P. Huntemeyer
A. Iriarte
A. Jardin-Blicq
H. Jhee
V. Joshi
D. Kieda
G. J. Kunde
S. Kunwar
A. Lara
J. Lee
W. H. Lee
D. Lennarz
H. Leon Vargas
J. Linnemann
A. L. Longinotti
R. Lopez-Coto
G. Luis-Raya
J. Lundeen
K. Malone
V. Marandon
O. Martinez
I. Martinez-Castellanos
H. Martinez-Huerta
J. Martinez-Castro
J. A. J. Matthews
J. McEnery
P. Miranda-Romagnoli
J. A. Morales-Soto
E. Moreno
M. Mostafa
A. Nayerhoda
L. Nellen
M. Newbold
M. U. Nisa
R. Noriega-Papaqui
L. Olivera-Nieto
N. Omodei
A. Peisker
Y. Perez Araujo
E. G. Perez-Perez
C. D. Rho
C. Riviere
D. Rosa-Gonzalez
E. Ruiz-Velasco
J. Ryan
H. Salazar
F. Salesa Greus
A. Sandoval
M. Schneider
H. Schoorlemmer
J. Serna-Franco
G. Sinnis
A. J. Smith
R. W. Springer
P. Surajbali
I. Taboada
M. Tanner
K. Tollefson
I. Torres
R. Torres-Escobedo
R. Turner
F. Urena-Mena
L. Villasenor
Xiaojie Wang, Missouri University of Science and TechnologyFollow
I. J. Watson
T. Weisgarber
F. Werner
E. Willox
J. Wood
G. B. Yodh
A. Zepeda
H. Zhou

Abstract

Background showers triggered by hadrons represent over 99.9% of all particles arriving at ground-based gamma-ray observatories. An important stage in the data analysis of these observatories, therefore, is the removal of hadron-triggered showers. Currently, the High-Altitude Water Cherenkov (HAWC) gamma-ray observatory employs an algorithm based on a single cut in two variables, unlike other ground-based gamma-ray observatories (e.g. H.E.S.S., VERITAS), which employ a large number of variables to separate the primary particles. In this work, we explore machine learning techniques (Boosted Decision Trees and Neural Networks) to identify the primary particles detected by HAWC. Our new gamma/hadron separation techniques were tested on data from the Crab nebula, the standard reference in Very High Energy astronomy, showing an improvement compared to the standard HAWC background rejection method.

Department(s)

Physics

Comments

National Science Foundation, Grant PRODEP-SEP UDG-CA-499

International Standard Serial Number (ISSN)

1824-8039

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Sissa Medialab Srl, All rights reserved.

Publication Date

18 Mar 2022

Share

 
COinS